Landscapes give latitude to 2D material designers

first_img Return to article. Long DescriptionResearchers at Rice University and Oak Ridge National Laboratory predict and confirmed that two-dimensional materials grown onto a cone allows control over where defects called grain boundaries appear. At left, a Rice model predicts how a grain boundary would form on a steep cone and extend onto a shallow cone. Scientists at Oak Ridge confirmed the prediction when they created the material seen in an electron microscope image at right. Click on the image for a larger version. Courtesy of the Yakobson Research GroupThe Rice team extended its theory to see what would happen if the cones sat on a plane. They predicted how grain boundaries would form over the entire surface, and again, Oak Ridge experiments confirmed their results.Yakobson said both the Rice and Oak Ridge teams were working on aspects of the research independently. “It was slow going until we met at a conference in Florida a couple of years back and realized that we should continue together,” he said. “It was certainly gratifying to see how experiments confirmed the models, while sometimes offering important surprises. Now we need to do the additional work to comprehend them as well.”Rice graduate students Henry Yu and Nitant Gupta are co-lead authors of the paper. Co-authors are former Rice postdoctoral researcher Zhili Hu, now at Nanjing University of Aeronautics and Astronautics, and researchers Kai Wang, Bernadeta Srijanto and Kai Xiao of Oak Ridge National Laboratory. Geohegan is the functional hybrid nanomaterials group leader at Oak Ridge’s Center for Nanophase Materials Sciences. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.The U.S. Department of Energy Basic Energy Sciences and its Center for Nanophase Materials Sciences and the Office of Naval Research supported the research.Computer resources were provided by the Night Owls Time-Sharing Service and its National Science Foundation-supported DAVinCI supercomputer, both administered by Rice’s Center for Research Computing; the resources were procured in partnership with Rice’s Ken Kennedy Institute for Information Technology.-30-Read the abstract at” alt=”last_img” /> read more